【Linux | C++ 】基于环形队列的多生产者多消费者模型(Linux系统下C++ 代码模拟实现)

news/发布时间2024/5/18 16:05:25

在这里插入图片描述

阅读导航

  • 引言
  • 一、生产者消费者模型
  • 二、环形队列简介
  • 三、基于环形队列的生产者消费者模型(C++ 代码模拟实现)
    • ⭕Makefile文件
    • ⭕ . h 头文件
      • ✅sem.hpp
      • ✅ringQueue.hpp
    • ⭕ . cpp 文件
      • ✅testMain.cpp
  • 温馨提示

引言

在上一篇文章中,我们深入探讨了Linux操作系统中的POSIX信号量,这是一个强大的同步机制,用于协调进程或线程对共享资源的访问。通过对信号量的深入理解和应用,我们学习了如何有效地解决并发编程中的竞争条件,确保程序的稳定性和效率。随着并发编程技术的不断深入,理解和掌握更多同步模型对于开发高性能、可靠的软件系统变得尤为重要。因此,本篇文章将继续我们的并发编程之旅,引入一个经典且实用的同步模型——基于环形队列的生产者消费者模型

在本文中,我们将详细探讨基于环形队列的生产者消费者模型的设计和实现。我们将介绍环形队列的数据结构,分析生产者和消费者之间的同步机制,探索如何利用前文提到的POSIX信号量以及其他同步工具(如互斥锁)来实现生产者和消费者之间高效、安全的数据交换。通过具体的代码示例和案例分析,读者将能够深入理解生产者消费者模型的工作原理,掌握如何在实际项目中设计和实现基于环形队列的高效同步模型。

探索基于环形队列的生产者消费者模型,不仅能够加深我们对并发编程同步机制的理解,还能够提升我们解决实际问题的能力。让我们一起继续并发编程的探索之旅,解锁更多的编程技巧和知识。

一、生产者消费者模型

生产者消费者模型是并发编程中一个经典且重要的问题模型,它描述了两类主体——生产者(Producer)和消费者(Consumer)在并发环境下对共享资源(通常是缓冲区或队列)的访问模式。生产者负责生成数据并将其放入缓冲区,而消费者则从缓冲区取出数据进行处理。该模型的核心在于解决生产者和消费者之间的同步与通信问题,保证数据在生产和消费时的一致性和可用性,同时避免资源的冲突和浪费。对于希望深入了解生产者消费者模型的读者,我们在之前的内容中有所介绍——链接:⭕生产者消费者模型

通过上述简介,希望读者能够对生产者消费者模型有一个初步的认识和理解。在并发编程的实践中,该模型不仅是一个常见的问题场景,也提供了一种思考并发问题的方法论,对于提高编程技能和系统设计能力都有重要意义。

二、环形队列简介

环形队列是一种固定大小的、使用数组实现的队列数据结构,特别在于其首尾相连的循环特性。这种结构允许当数组达到其容量上限时,新加入的元素可以放置在数组的开始位置(如果那里有空位)。环形队列的这一设计使得它在空间利用和操作效率上具有显著优势,尤其适用于有固定缓冲区需求的场景。

🚩主要特点包括:

  • 固定大小:一旦创建,队列的大小就固定不变。
  • 高效操作:入队和出队操作都非常高效,因为它们仅涉及指针的简单移动。
  • 两个指针:使用头指针和尾指针来分别追踪队列的第一个和最后一个元素。

环形队列广泛应用于操作系统、网络通信、生产者消费者模型等多个领域,特别是在需要高效管理固定缓冲区资源的场合。实现环形队列时,关键在于正确管理头尾指针的位置,并准确判断队列的空或满状态。
在这里插入图片描述

三、基于环形队列的生产者消费者模型(C++ 代码模拟实现)

⭕Makefile文件

ring_queue:testMain.ccg++ -o $@ $^ -std=c++11 -lpthread
.PHONY:clean
clean:rm -f ring_queue

这段代码是一个Makefile脚本,用于编译和清理一个名为ring_queue的项目。

⭕ . h 头文件

✅sem.hpp

// 防止头文件重复包含的预处理指令。
#ifndef _SEM_HPP_
#define _SEM_HPP_// 引入输入输出流库,虽然在此代码中未直接使用,可能为后续扩展预留。
#include <iostream>
// 引入POSIX信号量的头文件。
#include <semaphore.h>// 定义一个类 Sem。
class Sem
{
public:// 构造函数,接收一个整数value作为信号量的初始值。Sem(int value){// 初始化信号量,其中&sem_是信号量对象的地址,// 0表示信号量是当前进程的局部信号量,// value是信号量的初始值。sem_init(&sem_, 0, value);}// p操作,也称为wait操作,用于减少信号量的值。// 如果信号量的值为0,则调用此方法的线程将阻塞,直到信号量的值大于0。void p(){sem_wait(&sem_);}// v操作,也称为signal操作,用于增加信号量的值。// 如果有其他线程因为等待此信号量而阻塞,则它们中的一个将被唤醒。void v(){sem_post(&sem_);}// 析构函数,用于销毁信号量。~Sem(){sem_destroy(&sem_);}private:// 私有成员变量,存储信号量对象的实例。sem_t sem_;
};// 预处理指令的结束标志。
#endif

这个Sem类提供了简单的接口来进行信号量的基本操作:初始化(构造函数)、等待(p方法)、信号(v方法)和销毁(析构函数)。通过这个类,可以更方便地在C++项目中使用POSIX信号量进行同步操作

✅ringQueue.hpp

// 防止头文件重复包含的预处理指令。
#ifndef _Ring_QUEUE_HPP_
#define _Ring_QUEUE_HPP_// 引入所需的头文件。
#include <iostream>
#include <vector>
#include <pthread.h>
#include "sem.hpp"// 定义一个全局常量作为队列的默认大小。
const int g_default_num = 5;// 定义一个模板类RingQueue,用于实现环形队列。
template<class T>
class RingQueue
{
public:// 构造函数,参数default_num指定队列的大小,默认为g_default_num。RingQueue(int default_num = g_default_num): ring_queue_(default_num), num_(default_num),c_step(0),p_step(0),space_sem_(default_num), // 初始化空间信号量,表示可用空间数量。data_sem_(0) // 初始化数据信号量,表示队列中的数据项数量。{pthread_mutex_init(&clock, nullptr); // 初始化消费者互斥锁。pthread_mutex_init(&plock, nullptr); // 初始化生产者互斥锁。}// 析构函数,销毁互斥锁。~RingQueue(){pthread_mutex_destroy(&clock);pthread_mutex_destroy(&plock);}// push方法,生产者调用,向队列中添加元素。void push(const T &in){space_sem_.p(); // 等待有空间可写。pthread_mutex_lock(&plock); // 获取生产者互斥锁。ring_queue_[p_step++] = in; // 将元素添加到队列中。p_step %= num_; // 环形逻辑,如果到达末尾则回到开始。pthread_mutex_unlock(&plock); // 释放生产者互斥锁。data_sem_.v(); // 增加数据信号量,表示有新数据可读。}// pop方法,消费者调用,从队列中取出元素。void pop(T *out){data_sem_.p(); // 等待有数据可读。pthread_mutex_lock(&clock); // 获取消费者互斥锁。*out = ring_queue_[c_step++]; // 从队列中取出元素。c_step %= num_; // 环形逻辑,如果到达末尾则回到开始。pthread_mutex_unlock(&clock); // 释放消费者互斥锁。space_sem_.v(); // 增加空间信号量,表示有空间可写。}private:std::vector<T> ring_queue_; // 使用vector存储队列元素。int num_; // 队列的大小。int c_step; // 消费者在队列中的当前位置。int p_step; // 生产者在队列中的当前位置。Sem space_sem_; // 控制队列空间的信号量。Sem data_sem_; // 控制队列中数据的信号量。pthread_mutex_t clock; // 消费者互斥锁。pthread_mutex_t plock; // 生产者互斥锁。
};#endif   // 预处理指令的结束标志。

这个环形队列的实现利用信号量space_sem_data_sem_来控制队列的空间和数据,确保生产者不会在队列满时添加元素,消费者不会在队列空时尝试取出元素。同时,通过两个互斥锁clockplock分别保护消费者和生产者的操作,防止并发环境下的数据竞争问题。这样的设计使得RingQueue既能高效地管理数据,又能保证线程安全

⭕ . cpp 文件

✅testMain.cpp

// 包含RingQueue类的头文件。
#include "ringQueue.hpp"
#include <cstdlib> // 包含标准库,用于rand()等函数。
#include <ctime>   // 用于time()函数。
#include <sys/types.h> // 包含类型定义,例如pid_t。
#include <unistd.h>    // 包含各种常量和类型,并声明了各种函数,例如sleep()和getpid()。// 消费者线程的工作函数。
void *consumer(void *args)
{RingQueue<int> *rq = (RingQueue<int> *)args; // 将传入的参数转换为RingQueue指针。while(true){sleep(1); // 休眠1秒,模拟处理时间。int x;rq->pop(&x); // 从环形队列中取出一个元素。// 打印消费信息,包括消费的值和当前线程ID。std::cout << "消费: " << x << " [" << pthread_self() << "]" << std::endl;}
}// 生产者线程的工作函数。
void *productor(void *args)
{RingQueue<int> *rq = (RingQueue<int> *)args; // 将传入的参数转换为RingQueue指针。while(true){int x = rand() % 100 + 1; // 生成一个1到100之间的随机数。// 打印生产信息,包括生产的值和当前线程ID。std::cout << "生产: " << x << " [" << pthread_self() << "]" << std::endl;rq->push(x); // 将生成的随机数放入环形队列中。}
}int main()
{srand((uint64_t)time(nullptr) ^ getpid()); // 设置随机数种子,确保每次运行结果不同。RingQueue<int> *rq = new RingQueue<int>(); // 创建一个RingQueue对象。pthread_t c[3], p[2]; // 定义线程ID数组,3个消费者和2个生产者。// 创建消费者线程。pthread_create(&c[0], nullptr, consumer, (void*)rq);pthread_create(&c[1], nullptr, consumer, (void*)rq);pthread_create(&c[2], nullptr, consumer, (void*)rq);// 创建生产者线程。pthread_create(&p[0], nullptr, productor, (void*)rq);pthread_create(&p[1], nullptr, productor, (void*)rq);// 等待所有线程完成。for(int i = 0; i < 3; i++) pthread_join(c[i], nullptr);for(int i = 0; i < 2; i++) pthread_join(p[i], nullptr);return 0; // 程序结束。
}

这段代码展示了如何使用前面定义的RingQueue类来创建一个多生产者-多消费者模型。在这个模型中,生产者生成随机数并将其放入环形队列,而消费者从队列中取出这些数字并处理它们

首先通过srand()设置随机数种子,以确保每次程序运行时生成的随机数序列不同。然后,它创建了一个RingQueue<int>对象,用于存储生产者线程生成的整数。

接着,代码创建了3个消费者线程和2个生产者线程。每个线程都被分配了一个工作函数:生产者调用productor函数,而消费者调用consumer函数。这些线程通过pthread_create函数创建,并将RingQueue对象作为参数传递给它们的工作函数。

最后,main函数使用pthread_join等待所有线程完成,以确保程序在所有线程都执行完毕后才退出。

温馨提示

感谢您对博主文章的关注与支持!如果您喜欢这篇文章,可以点赞、评论和分享给您的同学,这将对我提供巨大的鼓励和支持。另外,我计划在未来的更新中持续探讨与本文相关的内容。我会为您带来更多关于Linux以及C++编程技术问题的深入解析、应用案例和趣味玩法等。如果感兴趣的话可以关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。我们期待与您建立更紧密的互动,共同探索Linux、C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/HuqW/763.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

配置oracle连接管理器(cman)

Oracle Connection Manager是一个软件组件&#xff0c;可以在oracle客户端上指定安装这个组件&#xff0c;Oracle连接管理器代理发送给数据库服务器的请求&#xff0c;在连接管理器中&#xff0c;我们可以通过配置各种规则来控制会话访问。 简而言之&#xff0c;不同于专用连接…

SSD201智能高清显示解决方案

一、方案描述 SSD201是高度集成的智能高清显示解决方案,主芯片为ARM Cortex A7,dule core,1.2GHz;SSD201内置DDR2,512Mb;支持H.264/H.265解码; 支持2D图形引擎; 支持MIPI和TTL接口显示屏&#xff0c;分辨率可高达1920x108060fps;支持SPI-Nor/Nand Flash;支持两路Ethernet port…

STM32—DHT11温湿度传感器

文章目录 一.温湿度原理1.1 时序图 二.代码 一.温湿度原理 1.1 时序图 (1).下图一是DHT11总的时序图。 (2).图二对应图一的左边黑色部分&#xff0c;图三对应图一的绿色部分&#xff0c;图四的左部分图对应图一的红色部分&#xff0c;图四的右部分对应图一的黄色部分。 (3)…

平时积累的FPGA知识点(6)

平时在FPGA群聊等积累的FPGA知识点&#xff0c;第六期&#xff1a; 1 万兆网接口&#xff0c;发三十万包&#xff0c;会出现掉几包的情况&#xff0c;为什么&#xff1f; 原因&#xff1a;没做时钟约束&#xff0c;万兆网接口的实现&#xff0c;本质上都是高速serdes&#xf…

Git基本操作(超详细)

文章目录 创建Git本地仓库配置Git配置命令查看是否配置成功重置配置 工作区、暂存区、版本库添加文件--场景一概述实例操作 查看.git文件添加文件--场景二修改文件版本回退撤销修改情况⼀&#xff1a;对于工作区的代码&#xff0c;还没有 add情况⼆&#xff1a;已经 add &#…

K8s服务发现组件之CoreDNS/NodeLocalDNS /kubeDNS

1 coredns 1.1 概述 1.1.1 什么是CoreDNS CoreDNS 是一个灵活可扩展的 DNS 服务器&#xff0c;可以作为 Kubernetes 集群 DNS&#xff0c;在Kubernetes1.12版本之后成为了默认的DNS服务。 与 Kubernetes 一样&#xff0c;CoreDNS 项目由 CNCF 托管。 coredns在K8S中的用途,…

苍穹外卖学习-----2024/02/19

1.开发环境搭建 我的git截图我使用的datagrip 运行sql学习到jwt令牌一种新的配置方式&#xff0c;写配置文件学习到了build属性nginx解决跨域的问题2.导入接口的文档 结果如图所示 3.Swagger /*** 通过knife4j生成接口文档* return*/Beanpublic Docket docket() {ApiInfo api…

每日学习总结20240219

每日总结 20240219 1.文件类型.csv CSV文件是一种以逗号分隔值&#xff08;Comma-Separated Values&#xff09;为标记的文本文件&#xff0c;它可以用来存储表格数据。每一行表示一条记录&#xff0c;而每一条记录中的字段则使用逗号或其他特定的分隔符进行分隔。 常用场景…

vector容器

1. vector基本概念 1.1 功能&#xff1a; vector数据结构和数组非常相似&#xff0c;也称为单端数组 vector与普通数组区别&#xff1a; 不同之处在于数组是静态空间&#xff0c;而vector可以动态扩展 动态扩展&#xff1a; 并不是在原空间之后续接新空间&#xff0c;而是找更…

详解平面点云面积计算

部分代码展示&#xff1a; &#xff08;1&#xff09;利用格网法计算面积&#xff1a; //&#xff08;2&#xff09;测试使用格网法计算平面点云面积 void main() {char *inputpath "D:\\testdata\\data.txt";vector<pcl::PointXYZ> points ReadPointXYZIn…

从入门到精通:AI绘画与修图实战指南

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 在这篇文章中&#xff0c;我们将深入探讨如何利…

蓝桥杯嵌入式第10届真题(完成) STM32G431

蓝桥杯嵌入式第10届真题(完成) STM32G431 题目 main.c /* USER CODE BEGIN Header */ /********************************************************************************* file : main.c* brief : Main program body********************************…

应急响应实战笔记02日志分析篇(5)

第5篇:MySQL日志分析 常见的数据库攻击包括弱口令、SQL注入、提升权限、窃取备份等。对数据库日志进行分析&#xff0c;可以发现攻击行为&#xff0c;进一步还原攻击场景及追溯攻击源。 0x01 Mysql日志分析 general query log能记录成功连接和每次执行的查询&#xff0c;我们…

Linux环境变量配置文件--《一图胜千言》

这张图是一个关于Linux系统中shell启动时配置文件加载顺序的流程图。图中分为登录shell和非登录shell两种情况&#xff0c;来描述不同配置文件的读取过程。 登录shell&#xff1a; 当用户登录时&#xff0c;会首先检查是否存在/etc/profile文件&#xff0c;如果存在&#xff0c…

华为配置旁挂二层组网直接转发示例

配置旁挂二层组网直接转发示例 组网图形 图1 配置旁挂二层组网直接转发示例组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件扩展阅读 业务需求 企业用户通过WLAN接入网络&#xff0c;以满足移动办公的最基本需求。且在覆盖区域内移动发生漫游时&#xff…

【Java】数据类型与变量

1.数据类型 在Java中数据类型主要分为两类&#xff1a;基本数据类型和引用数据类型。 基本数据类型有四类八种&#xff1a; 四类&#xff1a;整型、浮点型、字符型以及布尔型八种&#xff1a; 注意&#xff1a;不论是在16位系统还是32位系统&#xff0c;int都占用4个字节&am…

java客运管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java客运管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0&#…

快速学习Spring

Spring 简介 Spring 是一个开源的轻量级、非侵入式的 JavaEE 框架&#xff0c;它为企业级 Java 应用提供了全面的基础设施支持。Spring 的设计目标是简化企业应用的开发&#xff0c;并解决 Java 开发中常见的复杂性和低效率问题。 Spring常用依赖 <dependencies><!-…

docker 启动镜像命令

Docker 的启动命令用于启动 Docker 容器。这些命令可以从基本的 docker run 命令扩展到包括多个选项和参数&#xff0c;以满足不同的需求。以下是一些常用的 Docker 启动命令和选项的示例&#xff1a; 启动一个新容器&#xff1a; docker run [OPTIONS] IMAGE [COMMAND] [ARG..…

AMD FPGA设计优化宝典笔记(5)低频全局复位与高扇出

亚军老师的这本书《AMD FPGA设计优化宝典》&#xff0c;他主要讲了两个东西&#xff1a; 第一个东西是代码的良好风格&#xff1b; 第二个是设计收敛等的本质。 这个书的结构是一个总论&#xff0c;加上另外的9个优化&#xff0c;包含的有&#xff1a;时钟网络、组合逻辑、触发…
推荐文章