互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉

news/发布时间2024/5/18 15:35:56

文章目录

  • 0 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习多目标跟踪 实时检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新


if FLAGS.mode == ‘eager_tf’:
# Eager mode is great for debugging
# Non eager graph mode is recommended for real training
avg_loss = tf.keras.metrics.Mean(‘loss’, dtype=tf.float32)
avg_val_loss = tf.keras.metrics.Mean(‘val_loss’, dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):for batch, (images, labels) in enumerate(train_dataset):with tf.GradientTape() as tape:outputs = model(images, training=True)regularization_loss = tf.reduce_sum(model.losses)pred_loss = []for output, label, loss_fn in zip(outputs, labels, loss):pred_loss.append(loss_fn(label, output))total_loss = tf.reduce_sum(pred_loss) + regularization_lossgrads = tape.gradient(total_loss, model.trainable_variables)optimizer.apply_gradients(zip(grads, model.trainable_variables))logging.info("{}_train_{}, {}, {}".format(epoch, batch, total_loss.numpy(),list(map(lambda x: np.sum(x.numpy()), pred_loss))))avg_loss.update_state(total_loss)for batch, (images, labels) in enumerate(val_dataset):outputs = model(images)regularization_loss = tf.reduce_sum(model.losses)pred_loss = []for output, label, loss_fn in zip(outputs, labels, loss):pred_loss.append(loss_fn(label, output))total_loss = tf.reduce_sum(pred_loss) + regularization_losslogging.info("{}_val_{}, {}, {}".format(epoch, batch, total_loss.numpy(),list(map(lambda x: np.sum(x.numpy()), pred_loss))))avg_val_loss.update_state(total_loss)logging.info("{}, train: {}, val: {}".format(epoch,avg_loss.result().numpy(),avg_val_loss.result().numpy()))avg_loss.reset_states()avg_val_loss.reset_states()model.save_weights('checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/RJbH/2224.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

Learn HTML in 1 hour

website address https://www.youtube.com/watch?vHD13eq_Pmp8 excerpt All right, what’s going on? everybody. It’s your Bro, hope you’re doing well, and in this video I’m going to help you started with html; so sit back, relax and enjoy the show. If y…

【python 3.9.18】windowns安装版

因为这个版本官方未提供,所以需要自己编译出来,其他没有的版本可以依据下面的进行生成一个exe也可行。 成品: https://gitee.com/greatLong/python-3.9.18/tree/master/python-3.9.18/PCbuild/amd64 1、环境准备 需要使用到 这里面还需要选…

【数据结构】14 队列(带头结点的链式存储和顺序存储实现)

定义 队列是一个有序线性表,但是队列的插入、删除操作是分别在线性表的两个不同端点进行的。 设一个队列 Q ( a 1 , a 2 , . . . , a n ) Q (a_1, a_2,...,a_n) Q(a1​,a2​,...,an​),那么 a 1 a_1 a1​被称为队头元素, a n a_n an​为队…

学习数据结构和算法的第9天

题目讲解 移除元素 ​ 给你一个数组nums和一个值 val,你需要 原地 移除所有数值等于 val的元素,并返回移除后数组的新长度。 ​ 不要使用额外的数组空间,你必须仅使用0(1)额外空间并 原地 修改输入数组。 ​ 元素的顺序可以改变。你不需要…

Flink Task退出流程与Failover机制

这里写目录标题 1 TaskExecutor端Task退出逻辑2 JobMaster端failover流程2.1 Task Execute State Handle2.2 Job Failover2.2.1 Task Failure Handle2.2.2 Restart Task2.2.3 Cancel Task:2.2.4 Start Task 3 Task失败的自动重启策略 1 TaskExecutor端Task退出逻辑 …

恒峰|高压森林应急消防泵|守护森林安全

森林是地球的肺腑,是人类赖以生存的重要资源。然而,随着人类活动的增加,森林火灾频发,给生态环境和人类生活带来严重威胁。为了保护森林资源,我们必须采取有效的措施进行消防。高压森林应急消防泵作为一种高效、环保的…

Android14 InputManager-InputManagerService环境的构造

IMS分为Java层与Native层两个部分,其启动过程是从Java部分的初始化开始,进而完成Native部分的初始化。 □创建新的IMS对象。 □调用IMS对象的start()函数完成启动 同其他系统服务一样,IMS在SystemServer中的ServerT…

鸿蒙OS之UI架构解析

初步布局Index 当我们新建一个工程之后,首先会进入Index页。我们先简单的做一个文章列表的显示 class Article {title?: stringdesc?: stringlink?: string }Entry Component struct Index {State articles: Article[] []build() {Row() {Scroll() {Column() …

开发Chrome插件,background.js中log打印未出现在控制台

不同于内容脚本(通常命名content.js),在后台脚本(通常命名background.js或service-worker.js)中console.log并不会在控制台中直接显示。 要查看后台脚本上下文的正确控制台,执行如下步骤: 访问…

【Wio Terminal】输入/输出

输入/输出 一、概述1、硬件原理图Terminal引脚分布及功能Wio Terminal Grove端口引脚分配 二、使用Wio Terminal上的Grove模拟端口1、RPI 模拟引脚2、Grove引脚配置3、示例 三、使用 Wio Terminal上的Grove数字端口1、RPI 数字引脚2、Grove引脚配置将 Grove I2C 端口用作数字端…

华为笔记本原厂系统镜像恢复安装教程方法

1.安装方法有两种,一种是用PE安装,一种是华为工厂包安装(安装完成自带F10智能还原) 若没有原装系统文件,请在这里远程恢复安装:https://pan.baidu.com/s/166gtt2okmMmuPUL1Fo3Gpg?pwdm64f 提取码:m64f …

S-35390A计时芯片介绍及开发方案

计时芯片 S-35390A芯片是计时芯片,一般用来计算时间。低功耗,宽电压,受温度影响小,适用于很多电路。它有一个问题,不阻止用户设置不存在的时间,设置进去之后计时或者闹钟定时会出错。 规格书阅读 首先我…

并查集例题(连通块中点的数量)C++(Acwing)

代码&#xff1a; #include <iostream>using namespace std;const int N 100010;int n, m; int p[N], cnt[N];int find(int x) {if (p[x] ! x) p[x] find(p[x]);//优化return p[x]; }int main() {cin >> n >> m;for (int i 1; i < n; i ){p[i] i;cn…

公司新招了个腾讯拿38K的人,让我见识到了什么才是测试天花板

5年测试&#xff0c;应该是能达到资深测试的水准&#xff0c;即不仅能熟练地开发业务&#xff0c;而且还能熟悉项目开发&#xff0c;测试&#xff0c;调试和发布的流程&#xff0c;而且还应该能全面掌握数据库等方面的技能&#xff0c;如果技能再高些的话&#xff0c;甚至熟悉分…

力扣45. 跳跃游戏 II

Problem: 45. 跳跃游戏 II 文章目录 题目描述思路复杂度Code 题目描述 思路 Problem: 55.跳跃游戏 该题在上述的基础上&#xff0c;我们每次先求取当前可跳区间内的最远距离farthest;每当走到当前的区间胃部时&#xff08;end i&#xff09;&#xff1a;跳跃步数加一(jumps)&a…

各种手型都合适,功能高度可定制,雷柏VT9PRO mini和VT9PRO游戏鼠标上手

去年雷柏推出了一系列支持4KHz回报率的鼠标&#xff0c;有着非常敏捷的反应速度&#xff0c;在游戏中操作体验十分出色。尤其是这系列4K鼠标不仅型号丰富&#xff0c;而且对玩家的操作习惯、手型适应也很好&#xff0c;像是VT9系列就主打轻巧&#xff0c;还有专门针对小手用户的…

从故宫修建看「软件物料清单」的重要性 @安全历史01

故宫&#xff0c;这座中国传统文化的重要代表和象征性建筑已屹立近600年&#xff0c;是世界上现存规模最大、保存最为完整的木质结构古建筑之一。 故宫之所以能至今保存完好&#xff0c;除持续保护和修缮外&#xff0c;其使用的木材和砖石等材料也经过了精挑细选&#xff0c;保…

【进程创建】

目录 进程创建的方式查看进程pid 调用系统调用创建子进程fock函数做了的工作子进程刚开始创建的状态 一个变量&#xff0c;两个不同的值 进程创建的方式 1.在操作系统上输入的指令。 2.已经启动的软件。 3.程序员在代码层面上调用系统调用创建进程。 linux中第一个创建的进程是…

JAVA电商平台 免 费 搭 建 B2B2C商城系统 多用户商城系统 直播带货 新零售商城 o2o商城 电子商务 拼团商城 分销商城

涉及平台 平台管理、商家端&#xff08;PC端、手机端&#xff09;、买家平台&#xff08;H5/公众号、小程序、APP端&#xff08;IOS/Android&#xff09;、微服务平台&#xff08;业务服务&#xff09; 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis …

深度解析Sora的核心技术

Sora要解决的核心问题 Sora面临的挑战是将不同类型的视觉信息&#xff0c;如视频、文本、图像和声音等&#xff0c;整合为一种共同的表征形式。这种转换是实现统一训练过程的关键&#xff0c;旨在将各类数据集中到一个训练框架中&#xff0c;以便于进行大规模的统一学习。简而…
推荐文章