压缩感知常用的测量矩阵

news/发布时间2024/5/18 14:33:57

测量矩阵的基本概念

在压缩感知(Compressed Sensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。

测量矩阵的作用

测量矩阵的主要作用是从原始高维信号中提取出足够的信息,以便于后续能够从这些较少的信息中准确恢复原信号。理想的测量矩阵应满足两个重要条件:一是与稀疏基正交(或近似正交),称为“不相干性”;二是具有良好的“限制等距性质”(Restricted Isometry Property,RIP),以确保所有稀疏信号的结构得到保留。

测量矩阵的使用形式

测量矩阵的形式和结构多种多样,但它们都需要满足上述两个条件。在实际应用中,一般希望测量矩阵能够容易实现和计算,并且有助于稀疏信号的重构。

常见的测量矩阵

  1. 随机高斯矩阵

    • 随机高斯矩阵的元素由独立同分布的高斯随机变量组成。它们的不相干性很好,并且以高概率满足RIP条件。
  2. 随机伯努利矩阵

    • 随机伯努利矩阵的元素取1和-1的概率均为1/2。伯努利矩阵也具备良好的不相干性和RIP条件。
  3. 随机傅里叶矩阵

    • 随机傅里叶矩阵是从完整的离散傅里叶变换(DFT)矩阵中随机选取若干行构成的矩阵。它适用于信号在傅里叶基下稀疏或压缩的情况。
  4. 随机小波矩阵

    • 随机小波矩阵类似于随机傅里叶矩阵,不同之处在于它是从完整的小波变换矩阵中随机选取行。
  5. 有限差分矩阵

    • 有限差分矩阵通常用于图像压缩感知,它通过计算像素之间的差值来构造测量。
  6. 结构化随机矩阵

    • 结构化随机矩阵是指具有特定结构的随机矩阵,例如Toeplitz矩阵和循环矩阵。这些矩阵虽然随机,但由于其结构化特性,它们在存储和计算上更加高效。

研究测量矩阵的重要性

选择或设计合适的测量矩阵对于压缩感知的性能至关重要。一个好的测量矩阵可以极大地提高信号重构的准确性和稳定性,同时降低计算复杂度。研究者们一直在探索更多种类的测量矩阵,并分析它们的理论性质和实际应用效果。

结论

总的来说,在压缩感知中,测量矩阵扮演着至关重要的角色,它决定了信号采样的效率和重构的质量。随机高斯矩阵、随机伯努利矩阵、随机傅里叶矩阵、随机小波矩阵以及结构化随机矩阵等都是目前常用的测量矩阵类型。在选择测量矩阵时,不仅要考虑理论上的性能,还要关注其在实际系统中的可实现性和计算效率。未来的研究将继续在理论和实践中寻求最优的测量矩阵,以推动压缩感知技术的进步和应用。

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/XTXE/2347.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

calcite在flink中的二次开发,介绍解析器与优化器

calcite 在flink中的二次开发 1 CodeGen2 flink 语法扩展2.1 在进行 Rule 规则匹配时,放开对 Distinct 的限制2.2下面附上一个 利用codegen来生成所需类的例子: 3 flink使用calcite 生成解析器FlinkSqlParserImpl3.1 FlinkSqlParserImpl 的生成3.1.1 fli…

尝试一下最新的联合办公利器ONLYOffice

下载下来一起试试吧 桌面安装版下载地址:https://www.onlyoffice.com/zh/download-desktop.aspx) 官网地址:https://www.onlyoffice.com 普通Office对联合办公的局限性 普通Office软件(如Microsoft Office、Google Docs等)在面对…

shell脚本实现菜单案例......

系统命令: $REPLY : 当没有参数变量提供给read命令的时候,这个变量会作为默认变量提供给read命令 1.select命令写菜单 #!/bin/bash PS3"please input your choice>>>:" select MENU in {A..E};docase $REPLY inA)date;;B)pwd;;C)who…

OpenCV-42 直方图均匀化

目录 一、直方图均匀化原理 二、直方图均匀化在OpenCV中的运用 一、直方图均匀化原理 直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方…

Adobe将类ChatGPT集成到PDF中

2月21日,全球多媒体巨头Adobe在官网宣布,推出生成式AI助手AI Assistant,并将其集成在Reader 和Acrobat 两款PDF阅读器中。 据悉,AI Assistant的功能与ChatGPT相似,可以基于PDF文档提供摘要、核心见解、基于文档内容&a…

爬虫学习笔记-scrapy爬取当当网

1.终端运行scrapy startproject scrapy_dangdang,创建项目 2.接口查找 3.cd 100个案例/Scrapy/scrapy_dangdang/scrapy_dangdang/spiders 到文件夹下,创建爬虫程序 4.items定义ScrapyDangdangItem的数据结构(要爬取的数据)src,name,price 5.爬取src,name,price数据 导入item…

IDEA2023.3.4开启SpringBoot项目的热部署【简单明了4步操作】

添加devtools依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional> </dependency>IDEA开启自动编译 …

STM32 学习2 库函数控制GPIO输出

STM32 学习2 库函数控制GPIO输出 一、GPIO寄存器介绍1. GPIO简介2. GPIO功能&#xff08;1&#xff09;模式分类&#xff08;2&#xff09;模式设置方法MODE[1:0]&#xff1a;模式控制&#xff0c;用于配置端口引脚的模式&#xff1a;CNF[1:0]&#xff1a;配置引脚输出速度&…

Gitee教程2(完整流程)

1.配置git git config --global user.name "用户名" git config --global user.email "密码" 如何获取&#xff1f; gitee右上角加号点击新建仓库&#xff0c;仓库名随便起一个就行 找到这条命令&#xff0c;把这两句一个一个复制到vscode终端就行 2.创建g…

【Python Scrapy】分布式爬虫利器

在当今信息爆炸的时代&#xff0c;获取大规模数据对于许多应用至关重要。而分布式爬虫作为一种强大的工具&#xff0c;在处理大量数据采集和高效爬取方面展现了卓越的能力。 本文将深入探讨分布式爬虫的实际应用场景&#xff0c;通过代码示例演示其在提升爬取效率、保障系统稳定…

stm32和嵌入式linux可以同步学习吗?

在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「stm3的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;如果需要使用STM32&#xff0c;建…

成都力寰璨泓科技有限公司抖音小店品质保障

在数字化浪潮席卷全球的今天&#xff0c;网络购物已成为人们日常生活的重要组成部分。抖音小店作为新兴的电商平台&#xff0c;凭借其独特的社交属性和个性化推荐机制&#xff0c;吸引了众多消费者的目光。在众多抖音小店中&#xff0c;成都力寰璨泓科技有限公司的店铺以其卓越…

(12)ATF BL31中断

欢迎关注“安全有理”微信公众号。 概述 系统在运行过程中的任何阶段&#xff0c;都有可能产生中断。在Armv8架构系统中&#xff0c;TEE-OS运行在安全世界的EL1&#xff0c;Rich-OS运行在非安全世界的EL1&#xff0c;而BL31则运行于EL3。想实现各种中断在三种状态下被处理的统…

一、初始 Vue

1、Vue 1.1 Vue简介 1.1.1 Vue.js 是什么 Vue (读音 /vjuː/&#xff0c;类似于 view) 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是&#xff0c;Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层&#xff0c;不仅易于上手&#xff0c;还便于与第…

【Redis】Redis的数据分布算法

一共有五种算法&#xff0c;分别为&#xff1a;哈希算法、一致性哈希算法、带有限负载的一致性哈希算法、虚拟节点一致性哈希算法、虚拟槽分区 哈希算法 思想&#xff1a;根据某个key的值或者key 的哈希值与当前可用的 master 节点数取模&#xff0c;根据取模的值获取具体的服…

ELK入门(三)-Kibana

Kibana Kibana是一个开源的分析与可视化平台&#xff0c;设计出来用于和Elasticsearch一起使用的。你可以用kibana搜索、查看存放在Elasticsearch中的数据。Kibana与Elasticsearch的交互方式是各种不同的图表、表格、地图等&#xff0c;直观的展示数据&#xff0c;从而达到高级…

The method toList() is undefined for the type Stream

The method toList() is undefined for the type Stream &#xff08;JDK16&#xff09; default List<T> toList() { return (List<T>) Collections.unmodifiableList(new ArrayList<>(Arrays.asList(this.toArray()))); }

LeetCode.590. N 叉树的后序遍历

题目 590. N 叉树的后序遍历 分析 我们之前有做过LeetCode的 145. 二叉树的后序遍历&#xff0c;其实对于 N 叉树来说和二叉树的思路是一模一样的。 二叉树的后序遍历是【左 右 根】 N叉树的后序遍历顺序是【孩子 根】&#xff0c;你可以把二叉树的【左 右 根】想象成【孩子…

CTF--Web安全--SQL注入之‘绕过方法’

一、什么是绕过注入 众所周知&#xff0c;SQL注入是利用源码中的漏洞进行注入的&#xff0c;但是有攻击手段&#xff0c;就会有防御手段。很多题目和网站会在源码中设置反SQL注入的机制。SQL注入中常用的命令&#xff0c;符号&#xff0c;甚至空格&#xff0c;会在反SQL机制中…

IP地理位置查询定位:技术原理与实际应用

在互联网时代&#xff0c;IP地址是连接世界的桥梁&#xff0c;而了解IP地址的地理位置对于网络管理、个性化服务以及安全监控都至关重要。IP数据云将深入探讨IP地理位置查询定位的技术原理、实际应用场景以及相关的隐私保护问题&#xff0c;旨在为读者提供全面了解和应用该技术…
推荐文章