【深度学习笔记】3_4 逻辑回归之softmax-regression

news/发布时间2024/6/2 3:26:30

3.4 softmax回归

Softmax回归(Softmax Regression),也称为多类逻辑回归(Multinomial Logistic Regression),是一种用于多分类问题的分类算法。虽然名字里面带回归,实际上是分类。

前几节介绍的线性回归模型适用于输出为连续值的情景。在另一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练。本节以softmax回归模型为例,介绍神经网络中的分类模型。

(在本笔记中softmax regression的算法思想描述得比较详细,但是没有机器学习基础的同学对前面的概念可能会觉得有点模糊,建议参考深度学习之Softmax回归辅助理解)

3.4.1 分类问题

让我们考虑一个简单的图像分类问题,其输入图像的高和宽均为2像素,且色彩为灰度。这样每个像素值都可以用一个标量表示。我们将图像中的4像素分别记为 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4。假设训练数据集中图像的真实标签为狗、猫或鸡(假设可以用4像素表示出这3种动物),这些标签分别对应离散值 y 1 , y 2 , y 3 y_1, y_2, y_3 y1,y2,y3

我们通常使用离散的数值来表示类别,例如 y 1 = 1 , y 2 = 2 , y 3 = 3 y_1=1, y_2=2, y_3=3 y1=1,y2=2,y3=3。如此,一张图像的标签为1、2和3这3个数值中的一个。虽然我们仍然可以使用回归模型来进行建模,并将预测值就近定点化到1、2和3这3个离散值之一,但这种连续值到离散值的转化通常会影响到分类质量。因此我们一般使用更加适合离散值输出的模型来解决分类问题。

3.4.2 softmax回归模型

softmax回归跟线性回归一样将输入特征与权重做线性叠加。与线性回归的一个主要不同在于,softmax回归的输出值个数等于标签里的类别数。因为一共有4种特征和3种输出动物类别,所以权重包含12个标量(带下标的 w w w)、偏差包含3个标量(带下标的 b b b),且对每个输入计算 o 1 , o 2 , o 3 o_1, o_2, o_3 o1,o2,o3这3个输出:

o 1 = x 1 w 11 + x 2 w 21 + x 3 w 31 + x 4 w 41 + b 1 , o 2 = x 1 w 12 + x 2 w 22 + x 3 w 32 + x 4 w 42 + b 2 , o 3 = x 1 w 13 + x 2 w 23 + x 3 w 33 + x 4 w 43 + b 3 . \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{21} + x_3 w_{31} + x_4 w_{41} + b_1,\\ o_2 &= x_1 w_{12} + x_2 w_{22} + x_3 w_{32} + x_4 w_{42} + b_2,\\ o_3 &= x_1 w_{13} + x_2 w_{23} + x_3 w_{33} + x_4 w_{43} + b_3. \end{aligned} o1o2o3=x1w11+x2w21+x3w31+x4w41+b1,=x1w12+x2w22+x3w32+x4w42+b2,=x1w13+x2w23+x3w33+x4w43+b3.

图3.2用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出 o 1 , o 2 , o 3 o_1, o_2, o_3 o1,o2,o3的计算都要依赖于所有的输入 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4,softmax回归的输出层也是一个全连接层。

在这里插入图片描述

既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值 o i o_i oi当作预测类别是 i i i的置信度,并将值最大的输出所对应的类作为预测输出,即输出 arg ⁡ max ⁡ i o i \underset{i}{\arg\max} o_i iargmaxoi。例如,如果 o 1 , o 2 , o 3 o_1,o_2,o_3 o1,o2,o3分别为 0.1 , 10 , 0.1 0.1,10,0.1 0.1,10,0.1,由于 o 2 o_2 o2最大,那么预测类别为2,其代表猫。

(数学基础不好的小白看到置信度这个词大概不理解是什么意思,按我个人的理解可以解释为若在100次随机抽样中构造的100个区间如果95次包含了参数真值,那么置信度为95%.,假设100个学生考100次试,每个学生的100次成绩为一个置信区间,有95个学生成绩区间中都包含了80,那我们可以相信这个班学生的成绩水平为80,置信度是95%,如果理解有误感谢批评指正,建议参考【统计理论】关于置信度、置信区间的理解)

然而,直接使用输出层的输出有两个问题。一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。例如,刚才举的例子中的输出值10表示“很置信”图像类别为猫,因为该输出值是其他两类的输出值的100倍。但如果 o 1 = o 3 = 1 0 3 o_1=o_3=10^3 o1=o3=103,那么输出值10却又表示图像类别为猫的概率很低。另一方面,由于真实标签是离散值,这些离散值与不确定范围的输出值之间的误差难以衡量。

softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:

y ^ 1 , y ^ 2 , y ^ 3 = softmax ( o 1 , o 2 , o 3 ) \hat{y}_1, \hat{y}_2, \hat{y}_3 = \text{softmax}(o_1, o_2, o_3) y^1,y^2,y^3=softmax(o1,o2,o3)

其中

y ^ 1 = exp ⁡ ( o 1 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 2 = exp ⁡ ( o 2 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 3 = exp ⁡ ( o 3 ) ∑ i = 1 3 exp ⁡ ( o i ) . \hat{y}_1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}_2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}_3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)}. y^1=i=13exp(oi)exp(o1),y^2=i=13exp(oi)exp(o2),y^3=i=13exp(oi)exp(o3).

容易看出 y ^ 1 + y ^ 2 + y ^ 3 = 1 \hat{y}_1 + \hat{y}_2 + \hat{y}_3 = 1 y^1+y^2+y^3=1 0 ≤ y ^ 1 , y ^ 2 , y ^ 3 ≤ 1 0 \leq \hat{y}_1, \hat{y}_2, \hat{y}_3 \leq 1 0y^1,y^2,y^31,因此 y ^ 1 , y ^ 2 , y ^ 3 \hat{y}_1, \hat{y}_2, \hat{y}_3 y^1,y^2,y^3是一个合法的概率分布。这时候,如果 y ^ 2 = 0.8 \hat{y}_2=0.8 y^2=0.8,不管 y ^ 1 \hat{y}_1 y^1 y ^ 3 \hat{y}_3 y^3的值是多少,我们都知道图像类别为猫的概率是80%。此外,我们注意到

arg ⁡ max ⁡ i o i = arg ⁡ max ⁡ i y ^ i \underset{i}{\arg\max} o_i = \underset{i}{\arg\max} \hat{y}_i iargmaxoi=iargmaxy^i

因此softmax运算不改变预测类别输出。

3.4.3 单样本分类的矢量计算表达式

为了提高计算效率,我们可以将单样本分类通过矢量计算来表达。在上面的图像分类问题中,假设softmax回归的权重和偏差参数分别为

W = [ w 11 w 12 w 13 w 21 w 22 w 23 w 31 w 32 w 33 w 41 w 42 w 43 ] , b = [ b 1 b 2 b 3 ] , \boldsymbol{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{bmatrix},\quad \boldsymbol{b} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}, W= w11w21w31w41w12w22w32w42w13w23w33w43 ,b=[b1b2b3],

设高和宽分别为2个像素的图像样本 i i i的特征为

x ( i ) = [ x 1 ( i ) x 2 ( i ) x 3 ( i ) x 4 ( i ) ] , \boldsymbol{x}^{(i)} = \begin{bmatrix}x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)}\end{bmatrix}, x(i)=[x1(i)x2(i)x3(i)x4(i)],

输出层的输出为

o ( i ) = [ o 1 ( i ) o 2 ( i ) o 3 ( i ) ] , \boldsymbol{o}^{(i)} = \begin{bmatrix}o_1^{(i)} & o_2^{(i)} & o_3^{(i)}\end{bmatrix}, o(i)=[o1(i)o2(i)o3(i)],

预测为狗、猫或鸡的概率分布为

y ^ ( i ) = [ y ^ 1 ( i ) y ^ 2 ( i ) y ^ 3 ( i ) ] . \boldsymbol{\hat{y}}^{(i)} = \begin{bmatrix}\hat{y}_1^{(i)} & \hat{y}_2^{(i)} & \hat{y}_3^{(i)}\end{bmatrix}. y^(i)=[y^1(i)y^2(i)y^3(i)].

softmax回归对样本 i i i分类的矢量计算表达式为

o ( i ) = x ( i ) W + b , y ^ ( i ) = softmax ( o ( i ) ) . \begin{aligned} \boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)}). \end{aligned} o(i)y^(i)=x(i)W+b,=softmax(o(i)).

3.4.4 小批量样本分类的矢量计算表达式

为了进一步提升计算效率,我们通常对小批量数据做矢量计算。广义上讲,给定一个小批量样本,其批量大小为 n n n,输入个数(特征数)为 d d d,输出个数(类别数)为 q q q。设批量特征为 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d。假设softmax回归的权重和偏差参数分别为 W ∈ R d × q \boldsymbol{W} \in \mathbb{R}^{d \times q} WRd×q b ∈ R 1 × q \boldsymbol{b} \in \mathbb{R}^{1 \times q} bR1×q。softmax回归的矢量计算表达式为

O = X W + b , Y ^ = softmax ( O ) , \begin{aligned} \boldsymbol{O} &= \boldsymbol{X} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{Y}} &= \text{softmax}(\boldsymbol{O}), \end{aligned} OY^=XW+b,=softmax(O),

其中的加法运算使用了广播机制, O , Y ^ ∈ R n × q \boldsymbol{O}, \boldsymbol{\hat{Y}} \in \mathbb{R}^{n \times q} O,Y^Rn×q且这两个矩阵的第 i i i行分别为样本 i i i的输出 o ( i ) \boldsymbol{o}^{(i)} o(i)和概率分布 y ^ ( i ) \boldsymbol{\hat{y}}^{(i)} y^(i)

3.4.5 交叉熵损失函数

前面提到,使用softmax运算后可以更方便地与离散标签计算误差。我们已经知道,softmax运算将输出变换成一个合法的类别预测分布。实际上,真实标签也可以用类别分布表达:对于样本 i i i,我们构造向量 y ( i ) ∈ R q \boldsymbol{y}^{(i)}\in \mathbb{R}^{q} y(i)Rq ,使其第 y ( i ) y^{(i)} y(i)(样本 i i i类别的离散数值)个元素为1,其余为0。这样我们的训练目标可以设为使预测概率分布 y ^ ( i ) \boldsymbol{\hat y}^{(i)} y^(i)尽可能接近真实的标签概率分布 y ( i ) \boldsymbol{y}^{(i)} y(i)

我们可以像线性回归那样使用平方损失函数 ∥ y ^ ( i ) − y ( i ) ∥ 2 / 2 \|\boldsymbol{\hat y}^{(i)}-\boldsymbol{y}^{(i)}\|^2/2 y^(i)y(i)2/2。然而,想要预测分类结果正确,我们其实并不需要预测概率完全等于标签概率。例如,在图像分类的例子里,如果 y ( i ) = 3 y^{(i)}=3 y(i)=3,那么我们只需要 y ^ 3 ( i ) \hat{y}^{(i)}_3 y^3(i)比其他两个预测值 y ^ 1 ( i ) \hat{y}^{(i)}_1 y^1(i) y ^ 2 ( i ) \hat{y}^{(i)}_2 y^2(i)大就行了。即使 y ^ 3 ( i ) \hat{y}^{(i)}_3 y^3(i)值为0.6,不管其他两个预测值为多少,类别预测均正确。而平方损失则过于严格,例如 y ^ 1 ( i ) = y ^ 2 ( i ) = 0.2 \hat y^{(i)}_1=\hat y^{(i)}_2=0.2 y^1(i)=y^2(i)=0.2 y ^ 1 ( i ) = 0 , y ^ 2 ( i ) = 0.4 \hat y^{(i)}_1=0, \hat y^{(i)}_2=0.4 y^1(i)=0,y^2(i)=0.4的损失要小很多,虽然两者都有同样正确的分类预测结果。

改善上述问题的一个方法是使用更适合衡量两个概率分布差异的测量函数。其中,交叉熵(cross entropy)是一个常用的衡量方法:

H ( y ( i ) , y ^ ( i ) ) = − ∑ j = 1 q y j ( i ) log ⁡ y ^ j ( i ) , H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)}, H(y(i),y^(i))=j=1qyj(i)logy^j(i),

其中带下标的 y j ( i ) y_j^{(i)} yj(i)是向量 y ( i ) \boldsymbol y^{(i)} y(i)中非0即1的元素,需要注意将它与样本 i i i类别的离散数值,即不带下标的 y ( i ) y^{(i)} y(i)区分。在上式中,我们知道向量 y ( i ) \boldsymbol y^{(i)} y(i)中只有第 y ( i ) y^{(i)} y(i)个元素 y y ( i ) ( i ) y^{(i)}_{y^{(i)}} yy(i)(i)为1,其余全为0,于是 H ( y ( i ) , y ^ ( i ) ) = − log ⁡ y ^ y ( i ) ( i ) H(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}) = -\log \hat y_{y^{(i)}}^{(i)} H(y(i),y^(i))=logy^y(i)(i)。也就是说,交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。当然,遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。

假设训练数据集的样本数为 n n n,交叉熵损失函数定义为
ℓ ( Θ ) = 1 n ∑ i = 1 n H ( y ( i ) , y ^ ( i ) ) , \ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ), (Θ)=n1i=1nH(y(i),y^(i)),

其中 Θ \boldsymbol{\Theta} Θ代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成 ℓ ( Θ ) = − ( 1 / n ) ∑ i = 1 n log ⁡ y ^ y ( i ) ( i ) \ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)} (Θ)=(1/n)i=1nlogy^y(i)(i)。从另一个角度来看,我们知道最小化 ℓ ( Θ ) \ell(\boldsymbol{\Theta}) (Θ)等价于最大化 exp ⁡ ( − n ℓ ( Θ ) ) = ∏ i = 1 n y ^ y ( i ) ( i ) \exp(-n\ell(\boldsymbol{\Theta}))=\prod_{i=1}^n \hat y_{y^{(i)}}^{(i)} exp(n(Θ))=i=1ny^y(i)(i),即最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。

3.4.6 模型预测及评价

在训练好softmax回归模型后,给定任一样本特征,就可以预测每个输出类别的概率。通常,我们把预测概率最大的类别作为输出类别。如果它与真实类别(标签)一致,说明这次预测是正确的。在3.6节的实验中,我们将使用准确率(accuracy)来评价模型的表现。它等于正确预测数量与总预测数量之比。

小结

  • softmax回归适用于分类问题。它使用softmax运算输出类别的概率分布。
  • softmax回归是一个单层神经网络,输出个数等于分类问题中的类别个数。
  • 交叉熵适合衡量两个概率分布的差异。

注:本节与原书基本相同,原书此节传送门

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.bcls.cn/bEZO/7799.shtml

如若内容造成侵权/违法违规/事实不符,请联系编程老四网进行投诉反馈email:xxxxxxxx@qq.com,一经查实,立即删除!

相关文章

Unity中URP实现水体效果(泡沫)

文章目录 前言一、给水上色1、我们在属性面板定义两个颜色2、在常量缓冲区申明这两个颜色3、在片元着色器中,使用深度图对这两个颜色进行线性插值,实现渐变的效果 二、实现泡沫效果1、采样 泡沫使用的噪波纹理2、控制噪波效果强弱3、定义_FoamRange来控制…

在 Windows 上使用 VC++ 编译 OpenSSL 源码的步骤

在 Windows 上使用 VC 编译 OpenSSL 源码的步骤如下: 准备工作 安装 Visual Studio 2017 或更高版本。安装 Perl 脚本解释器。安装 NASM 汇编器。 编译步骤 下载 OpenSSL 源码。解压 OpenSSL 源码。打开命令行工具,并进入 OpenSSL 源码目录。运行以下…

消息中间件之RocketMQ源码分析(十七)

Broker CommitLog索引机制的数据结构 ConsumerQueue消费队列 主要用于消费拉取消息、更新消费位点等所用的索引。源代码参考org.apache.rocketmq.store.ConsumerQueue.该文件内保存了消息的物理位点、消息体大小、消息Tag的Hash值 物理位点:消息在CommitLog中的位点值消息体…

Spring篇----第一篇

系列文章目录 文章目录 系列文章目录前言一、不同版本的 Spring Framework 有哪些主要功能?二、什么是 Spring Framework?三、列举 Spring Framework 的优点。四、Spring Framework 有哪些不同的功能?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍…

Python和Jupyter简介

在本notebook中,你将: 1、学习如何使用一个Jupyter notebook 2、快速学习Python语法和科学库 3、学习一些IPython特性,我们将在之后教程中使用。 这是什么? 这是只为你运行在一个个人"容器"中的一个Jupyter noteboo…

HTML+CSS+JS:轮播组件

效果演示 一个具有动画效果的卡片元素和一个注册表单&#xff0c;背景为渐变色&#xff0c;整体布局简洁美观。 Code <div class"card" style"--d:-1;"><div class"content"><div class"img"><img src"./i…

强烈建议!网络安全人员一定要在2024年必考下这几本证书

曾零基础备考2个月拿下CISP证书&#xff0c;年收入增加了不少&#xff0c;作为一个网络安全工程师&#xff0c;我真诚的建议有入行想法朋友们&#xff1a;在2024年把这几类证书选考下来&#xff01; 在网络安全行业含金量最高的当属CISSP——注册信息系统安全专家。但这个认证…

FPGA领域顶级学术会议

FPGA领域顶级学术会议主要有FPGA,FCCM,FPL和FPT。 1 FPGA 会议全名是: ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 网站是:https://dl.acm.org/conference/fpga FPGA常年在美国举办,每年2月,偏FPGA基础研究; 该会议的论文免费下载。这个比…

el-table增加/编辑打开el-dialog内嵌套el-form,解决编辑重置表单不成功等问题

需求&#xff1a;在做表格的增删改查&#xff0c;其中新增和编辑弹窗都是同一个弹窗&#xff0c;之后有个重置按钮&#xff0c;需要用户输入的时候可以重置清空等。本文章解决如下问题 1.就是在编辑数据回填后点击重置表单没有清空也没有报错 2.解决清空表单和表格数据相互影响…

数据库增删改查

DDL: 数据定义语言&#xff0c;用来定义数据库对象&#xff08;数据库、表、字段&#xff09;DML: 数据操作语言&#xff0c;用来对数据库表中的数据进行增删改DQL: 数据查询语言&#xff0c;用来查询数据库中表的记录DCL: 数据控制语言&#xff0c;用来创建数据库用户、控制数…

YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库

✨界面展示 登录 注册 垃圾检测 用户管理 404 Not Found页面 403 拒绝访问页面 黑暗模式 深蓝模式 灰色模式 色弱模式 ✨技术特性 深度学习 YOLOv5&#x1f680;&#xff1a;高效、准确的目标检测算法&#xff0c;实时识别检测图像和视频中的各种对象PyTorch&#xff1a;机器…

多模态表征—CLIP及中文版Chinese-CLIP:理论讲解、代码微调与论文阅读

我之前一直在使用CLIP/Chinese-CLIP&#xff0c;但并未进行过系统的疏导。这次正好可以详细解释一下。相比于CLIP模型&#xff0c;Chinese-CLIP更适合我们的应用和微调&#xff0c;因为原始的CLIP模型只支持英文&#xff0c;对于我们的中文应用来说不够友好。Chinese-CLIP很好地…

C 嵌入式系统设计模式 08:硬件代理模式

本书的原著为&#xff1a;《Design Patterns for Embedded Systems in C ——An Embedded Software Engineering Toolkit 》&#xff0c;讲解的是嵌入式系统设计模式&#xff0c;是一本不可多得的好书。 本系列描述我对书中内容的理解。本文章描述访问硬件的设计模式之一&…

Redis在java中的使用

Spring Data Redis中提供了一个高度封装的类&#xff1a;RedisTemplate&#xff0c;对相关api进行了归类封装,将同一类型操作封装为operation接口&#xff0c;具体分类如下&#xff1a; ValueOperations&#xff1a;string数据操作SetOperations&#xff1a;set类型数据操作ZS…

面试redis篇-10Redis集群方案-主从复制

在Redis中提供的集群方案总共有三种: 主从复制哨兵模式分片集群主从复制 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每…

使用HiveMQ实现Android MQTT

MQTT官网&#xff1a;https://mqtt.org/ 百度Android MQTT&#xff0c;或者B站上搜索&#xff0c;发现大多使用https://github.com/eclipse/paho.mqtt.android&#xff0c;这是Eclipse的一个Android MQTT客户端实现库&#xff0c;但是我发现这个库在运行到高版本的手机上时报错…

VMware使用虚拟机,开启时报错:无法连接虚拟设备 0:0,因为主机上没有相应的设备。——解决方法

检查虚拟机配置文件并确保物理设备已正确连接。 操作&#xff1a; 选中虚拟机&#xff0c;打开设置&#xff0c;点击CD/DVD。在连接处选择使用ISO镜像文件

Linux之部署前后端分离项目

Nginx配置安装 1.安装依赖 我们这里安装的依赖是有4个的 [rootlocalhost opt]# yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 2.上传解压安装包 [rootlocalhost opt]# tar -xvf nginx-1.13.7.tar.gz -C /usr/local/java/3.安装Nginx &#xff0…

Cloudera虚拟机配置(虚拟机环境自带Hadoop、Impala等大数据处理应用)

上学期的大数据处理课程&#xff0c;笔者被分配到Impala的汇报主题。然而汇报内容如果单纯只介绍Impala的理论知识&#xff0c;实在是有些太过肤浅&#xff0c;最起码得有一些实际操作来展示一下Impala的功能。但是Impala的配置实在是有些困难与繁琐&#xff0c;于是笔者通过各…

Canal + Kafka 同步 MySQL 数据到 Redis

解决缓存和数据库一致性问题 一般来说&#xff0c;缓存中的数据没什么问题&#xff0c;但是数据库更新后&#xff0c;就容易出现缓存&#xff08;Redis&#xff09;和数据库&#xff08;MySQL&#xff09;间的数据一致性问题。由于写和读是并发的&#xff0c;没法保证顺序&…
推荐文章